
. 

INTENTIONAL NONLINEARITY I N  A 

STATE VARIABLE FEEDBACK SYSTEM 

by 

Hasmukhrai Bhawanidas Parekh 

LITY : 

diie attached r q > o r t  is the 
good COPY. 

A Thesis Submitted to t h e  Faculty of t h e  

DEPARTMENT OF ELECTRICAL ENGINEERING 
-- - - - -  

In Partial Fulfillment of the  Requirements 
For the  Degree of 

MASTER OF SCIENCE 

In the Graduate C o l l e g e  

THE UNIVERSITY OF ARIZONA 

1 9 6 7  

t 



. 

STATEMENT BY AUTHOR 

This thesis has been submitted in partial 
fulfillment of requirements for an advanced degree 
at The University of Arizona and is deposited in the 
University Library to be made available to borrowers 
under rules of the Library, 

Brief quotations from this thesis are allowable 
without special permission, provided that accurate 
acknowledgment of source is made. Requests for  per- 
mission for extended quotation from or reproduction 
of this manuscript in whole or in part may be granted 
by the head of the major department or the Dean of 
the Graduate College when in his judgment the proposed 
use of the material is in the interests of scholarship. 
In all other instances, however, permission must be 
obtained f r o m  the author. 

SIGNED; 

APPROVAL BY THESIS DIRECTOR 

This thesis has been approved on the date shown below: 

I ,  

Professor of Electrical dngineering 



DEDICATION 

This thesis is dedicated to my parents  

and a l l  t h o s e  who have inspired m e  in my achievements. 



ACKNOWLEDGMENT 

The author wishes to acknowledge the 

encouragement, advice, and suggestions rendered by 

Professor Donald D. Schultz and Mr. Charles R. 

Slivinsky in the preparation of this thesis. 

A- 
t.$ 

iv 



TABLE OF CONTENTS 

Chapter  Page 

Acknowledgment ........................... i v  

L i s t  of  F igures  .......................... v i  

A b s t r a c t  ................................. i X  

............................. I I n t r o d u c t i o n  1 

I1 General  Theory ........................... 6 

I11 Design o f  Nonl inear  G a i n - I n s e n s i t i v e  
Systems .................................. 31 

I V  Design o f  a Fuel  Valve Servomechanism.. a 5 4  

v Summary and Conclusions .................. 6 9  

Appendix ................................. 7 2  

References . .  ............................. 8 2  



LIST OF FIGURES 

Page Number 

2-1 

2-2 

2-3 

2-4 

2-5 

2-6 

2-7 

2-8 

2-9 

2-10 

2-11 

2-12 

2-13 

Basic Conf igu ra t ion  for a Linear S t a t e  
Variable Feedback System . . . . . . . .  8 

Geq and H e  Method of Represent ing  a 
Linear  SysZem . . . . . . . . . . . . .  10 

A S t a t e  Variable Feedback System wi th  
t h e  Non l inea r i ty  N i n  t h e  Forward Path . 11 

Block Diagram Reduction for t h e  System 
Shown i n  Fig. 2-3 . . . . . . . . . . .  12 

Equiva len t  or Reduced Form of Fig.  2-4(b) 
w i t h r ( t ) = O  . . . . . . . . . . . . .  14 

C h a r a c t e r i s t i c  and t h e  Polar P l o t  of 
Equiva len t  Gain for  the  N o n l i n e a r i t y  . . 17 

The System of Pig. 2-4(b) . . . . . . .  19 

V a r i o u s  Types of G(j a) Funct ions  
Showing the P o s s i b i l i t y  of O s c i l l a t i o n s  
and t h e  Polar Plot of -l/keq for t h e  
N o n l i n e a r i t y  . . . . . . . . . . . . . .  19  

Plant Showing S a t u r a t i o n  a t  Different  
P o i n t s  i n  the System . . . . . . . . . .  21 

Nonlinear  System Designed by S t a t e  
V a r i a b l e  Feedback Method . . . . . . . .  23 

P o l a r  Plot of G ( j G ) )  and -l/keq for 
C a s e 1  . . . . . . . . . . . . . . . . .  24 

P o l a r  P l o t  of G ( j u )  and - l / k e q  for the 
System Shown i n  Fig.  2-12(a) . . . . . .  26 

P o l a r  P l o t  of G ( j U )  and - l / ~ ~ ~  for 
Case I1 . . . . . . . . . . . . . . . .  27 

v i  



Y i i  

LIST OF FIGURES--Continued 

Page Number 

2-14 

3-1 

3-2 

3-3 

3 -4 

3-5 

3 - 6  

3-7 

3-8 

3-9 

3-10 

3-11 

3-  12 

4 - 1  

4-2 

Polar Plot of G ( j G ) )  and -l/keq for 
Case111 . . . . . . . . . . . . . . . .  29 

A Linear Gain-Insensitive System, where 
G(s)H~~(s) = k'/(s+a) . . . . . . . . .  33 

Nonlinear Gain-Insensitive System and 
Modified Block Diagram . . . . . . . . .  35 

Plant and Characteristic of N for 
Example1 . . . . . . . . . . . . . . .  38 

Gain-Insensitive and Non-Gain-Insensitive 
Systems with Their Root Locus Sketch in 
the Linear Region . . . . . . . . . . .  41 

Time Response for the System of 
Example1 . . . . . . . . . . . . . . .  42 

Explains the Decrease in k' When N 
Operates in the Nonlinear Region . . . .  43 

Plant and Characteristic of N for 
Example2 . . . . . . . . . . . . . . .  45 

Gain-Insensitive and Non-Gain-Insensitive 
Systems Along w i t h  Their Root Locus Sketch 
in the Linear Region . . . . . . . . . .  47 

Plant and Characteristic of N for 
Example3 . . . . . . . . . . . . . . .  48 

Gain and Non-Gain-Insensitive Systems 
Along with Their Root Locus Sketch in 
the Linear Region . . . . . . . . . . .  49 

Time Response for the System of 
Example3 . . . . . . . . . . . . . . .  50 

T i m e  Response Showing O s c i l l a t i o n s  f o r  
Example 3 . . . . . . . . . . . . . . .  5 2  

L i n e a r i z e d  Plant  o f  P h y s i c a l  System . . 5 5  

Open-Loop and Closed-Loop Pole Location 
for the Linear System . . . . . . . . .  59 



viii 

LIST OF FXGURES-Continued 

Number Page 

4-3 Modification of Plant by Feeding Back 
Variables x2 Through x7 . . . . . . . . .  62 

4-4 Realization of Closed-Loop Transfer 
Function by Feeding Back Variables 
x1Throughx7.. . . . . . . . . . . . .  63 

4-5 T i m e  Responses of t h e  7th Order Linear 
Gain-Insensitive System . . . . . . . . .  65 

4-6 Time Response for the  Nonlinear System . 67 

A- 1 Linearized Plant of Physical System . . 73 

A-2 Analog Computer Wiring Diagram for 
Simulation . . . . . . . . . . . . . . .  79 

A- 3 The Details of the Bridge Circuit Realizing 
Limiter and its Input-Output 
Characteristic . . . . . . . . . . . . .  81 

..... 



ABSTRACT 

In this thesis a particular type of nonlinear 
state variable feedback system is discussed. The 
system contains a single nonlinearity, and it is 
shown by describing function techniques and examples 
that the optimum location of the nonlinear element 
for maximum control is at the left end. A method for 
designing gain-insensitive systems is presented, and 
it is shown by simple reasoning and examples that the 
system response for the gain-insensitive design is 
better than that of systems designed by conventional 
state variable feedback. 

A method is given to overcome the effects of 
saturation within the fixed plant by introducing an 
intentional nonlinearity to limit the saturating 
elements to their linear regions of operation. This 
makes it possible to apply the above gain-insensitive 
design technique so that the nonlinear plant can be 
made absolutely stable for all gain. The proposed 
method is then applied to improve the response of a 
fuel valve servomechanism, and the system is evaluated 
using an analog computer. 



CHAPTER I 

INTRODUCTION 

Throughout the course of scientific and 

industrial development the problem of controlling 

dynamical processes has existed. However, control 

engineering, considered as one of the engineering 

disciplines, is less than a century old. After 

World War I1 complex industrial processes and especially 

the modern space program have boosted the demand for 

automation and control engineering science. 

The problem of the control engineer is to 

control a plant so thatin spite of the expected 

variation in system description, the behavior of the 

system does not exceed predetermined limits. Stringent 

performance requirements and the sophisticated devices 

of modern technology have resulted in the development 

of complicated systems which cannot be synthesized and 

analyzed by linear techniques. In addition to inherent 

system nonlinearities sometimes nonlinearities are 

introduced intentionally to realize better performance 

or more economy. The investigation and development 
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of methods of introducing an intentional nonlinearity 

to improve the system performance is the subject of 

this work. 

History 

Many systems can be described by differential 

equations which may be linear or nonlinear. When 

the differential equations are linear, the system is 

also said to be linear and can be designed by the 

frequency domain as well as the time-domain approach. 

In the frequency-domain Laplace transform techniques 

are used for analysis and synthesis: improvement in 

the system performance is usually effected by series 

and feedback compensation designed with the aid of 

Bode diagrams (Bower and Shultheiss, 1959). An al- 

ternate method of design uses root locus techniques 

(Truxal, 1956). The problem of determining stability 

can be solved by such well-known methods as Nyquist 

diagrams, root locus techniques, and the Rout h-Hurwitz 

criteria. For nonlinear systems the differential 

equations describing the system are nonlinear, and 

Laplace transform techniques are not applicable; no 

direct, analytical approach exists to relate the input 

and the output of the system. Some of the more widely 

known methods for the analysis and synthesis of nonlinear 
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systems are linearization about an operating point, 

graphical techniques such as the isocline method 

(Thaler and Pastel, 1963), describing function methods 

(Gibson, 1963), and analytical and numerical solutions. 

For stability investigations one can use the second 

method of Liapunov (Schultz, 1965), the describing 

function method, and Popov criteria. 

The modern approach to control system design 

is quite different from conventional approaches. A 

system must be described by n first-order differential 

equations defining n state variables. The design is 

accomplished by feeding back all state variables after 

multiplication by constant coefficients. Here the 

system is controlled by all the states and Schultz 

and Melsa (1967) have shown that a linear system can 

be optimized for a quadratic Performance Index by 

feeding back a linear combination of all variables. 

In addition, any desired closed-loop response can be 

achieved by feeding back all the state variables in 

the proper combination. Herring (1967) has shown that 

a certain class of nonlinear systems can be made ab- 

solutely stable and gain-insensitive by feeding back 

all the state variables. 
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Outline of Thesis 

In the following chapters it is shown how 

the introduction of an intentional nonlinearity can 

be combined with state variable feedback to overcome 

the effects of saturation. A step-by-step development 

is presented with illustrative examples, and the 

method is applied to improve the response of a practical 

problem. 

Chapter I1 deals with the representation of 

linear and nonlinear state variable feedback systems. 

Stability criteria for nonlinear systems are presented 

along with a brief description of describing function 

theory. The effect of the location of the nonlinearity 

is investigated, and it is concluded that the optimum 

location is at the left most end for maximum control 

over the system. Finally, the chapter is concluded 

with illustrative examples. 

In Chapter I11 the effect of saturation in a 

system is discussed and the idea of introducing an 

intentional, saturation type of nonlinearity is described. 

The concept of gain-insensitive systems is presented for 

linear as well as nonlinear systems, Two systems, gain- 

insensitive and non-gain-insensitive, are compared and 

discussed. It is shown that the gain-insensitive system 



5 

i s  a b s o l u t e l y  stable and h a s  a s a t i s f a c t o r y  s t e p  

response  when t h e  ga in  i s  v a r i e d  or operates i n  t h e  

n o n l i n e a r  reg ion .  F i n a l l y ,  a des ign  t echn ique  is  

g iven  for  overcoming t h e  effects of s a t u r a t i o n  by 

i n t r o d u c i n g  an i n t e n t i o n a l  n o n l i n e a r i t y .  

I n  Chapter  IV t h e  t echn iques  developed i n  

Chapter  I1 and 111 are a p p l i e d  t o  improve t h e  r e sponse  

of a f u e l  v a l v e  servomechanism. The d e s i g n  is evalu-  

a t e d  us ing  bo th  d i g i t a l  and ana log  computers, and t h e  

r e s u l t s  are p resen ted  i n  recorded  form. 

The f i n a l  chap te r  presents t h e  c o n c l u s i o n s  

and s u g g e s t i o n s  for f u r t h e r  i n v e s t i g a t i o n .  



CHAPTER I1 

GENERAL THEORY 

In this chapter the modern representation of 

linear systems is discussed and state variable feedback 

methods are presented: general expressions for the 

transfer functionsG (s), Heq(s), Y/R(s), etc., are 

given in matrix form. It is shown that for systems 

which contain a single nonlinearity but are otherwise 

linear, the corresponding expressions for G 

etc., depend on the location of the nonlinearity in 

the forward path. 

e¶ 

( s ) ,  Heq(s), eq 

The effects of the location of the nonlinear 

element in a system are further investigated by apply- 

ing describing function theory; and it is concluded 

that, when the nonlinearity is located at the left end 

of the system, desirable stability properties and 

maximum control over the system are achieved. 

the results are illustrated with a third-order system 

having a single nonlinearity. 

Finally, 

Representation of Linear Svstem3 

There are two different ways to represent 

control systems: t h e  input-output form and the modern 

6 
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s ta te  v a r i a b l e  method, Here t h e  l a t t e r  one is of prime 

i n t e r e s t  and hence i s  p r e s e n t e d  i n  de ta i l .  

Cons ider  F ig .  2-1, showing a g e n e r a l  r ep resen -  

t a t i o n  of a l i n e a r  system. 

and i s  d e s c r i b e d  by t h e  fo l lowing  set of n first-order 

Gp r e p r e s e n t s  t h e  p l a n t  

l i n e a r  d i f f e r e n t i a l  equa t ions :  . - x = & + k u  

y = e x  
T 

where 

- A i s  t h e  n x n p l a n t  m a t r i x  

- b i s  t h e  n x 1 c o n t r o l  vector 

- c i s  t h e  n x 1 o u t p u t  vector 

k i s  t h e  n x 1 column matrix of feedback c o e f f i c i e n t s  

- x is  t h e  n x 1 state  vector 

u is t h e  i n p u t  t o  t h e  p l a n t  

r is t h e  i n p u t  t o  t h e  sys t em 

- I i s  t h e  n x n i d e n t i t y  matrix 

The t r a n s f e r  f u n c t i o n  G (s) r e l a t i n g  t h e  c o n t r o l  
P 

f u n c t i o n  u and t h e  o u t p u t  of t h e  sys tem y is g i v e n  by 

T 
(2-1) G p ( 4  = y /u ( s )  = rse(s>& 

where Q ( s )  is  c a l l e d  t h e  r e s o l v e n t  matrix and is g i v e n  

by (SA - (Schu l t z  and Melsa, 1967) .  The i n p u t  

and o u t p u t  of t h e  system are related by 

Y/R(s) = - cT&b (2-2) 
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where & is the closed-loop resolvent matrix, given 

by (sL - &) or (s& - fi + && ) , 

The system of Fig, 2-1 can be represented by 

.- 
-1 T -1 

two alternate block diagram configurations, the G ( s )  e¶ 
and Heq(S) representations shown in Fig. 2-2(a) and 

(b), respectively. General expressions for Heq(s), 

Geq(SI8 and Gp(S)Heq(s) are given below, 

(2-3)  

(2-4) 

Heq(s) = (9 T g ( s ) B ) / c  T B(s)b 

Geq(s) = ( ~ ~ ~ ( s ) b ) / ( l  + (k - 6) T Q(S)B) 
GpHeq(s) = hTg(s)& (2-5 

All the above expressions can be found in terms of & 
(Schultz and Melsa, 1967). 

State Variable Representation of a 
Particular Type of Nonlinear System 

Consider the configuration shown in Fig. 2-3 a d  

having the single nonlinearity represented by the block 

labelled N. 

order transfer function; i,e,, G~ = ki(s + zi)/(s + pi). 

Block diagram manipulation yields the modified diagram 

shown in Fig. 2-4(a), where G1(s) and G~(s) represent 

(n - i)= and i-order th linear transfer functions, 

respectively, and Hleq(s) and Hzeq(s) are of order 

(n - i - 1) and ( i  - l), respectively, Further 

G1, G2 ..., Gn each represents a first- 
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and Heq Method of Representing 
2-2 Geq 

a Linear System 
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F i g .  2-4 Block Diagram Reduction for the  
System Shown in F i g .  2-3 
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reduction of the block diagram shows the system in 

final form in Fig. 2-4(b). 

Now comparing the representations for linear 

systems and nonlinear systems, one can observe that 

nonlinear systems cannot be represented in the simplest 

Geq or Heq form (as can linear systems) unless the 

nonlinearity is located at the left most end. In the 

general case (see Fig. 2-4 (b) ) linear transfer functions 

and characteristicsof the nonlinearity are required 

to describe the nonlinear system. Heq(s) has n - 1 
zeros while Hzeq(s) has i - 1 zeros. As the non- 

linearity is shifted towards the left side, the number 

of zeros in H ( s )  increases and finally becomes n - 1 
when it is located a t  the left end. 

2eq 

Describins Function meory 

The describing function method is based on an 

analysis which neglects the effects of harmonics in 

the system, so that the accuracy of technique increases 

with the order of the system. The system configuration 

shown in Fig. 2-5 represents the reduced form of 

Fig. 2-4(b) and is in the correct form for applying 

the describing function method. N is the single non- 

linearity of the system and is assumed to be insensitive 
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Fig. 2-5 Equivalent or Reduced Form 
of F i g .  2-4(b) w i t h  r(t) = 0 
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to frequency. It is desired to determine whether a 

sustained oscillation of sinusoidal form exists in the 

system when there is no external input. 

The output of the nonlinear element when its 

input is a sinusoidal wave having an amplitude E is 

written in the form 

eo = keqe + fd(e) (2-6a) 

The first term on the right-hand side is the 

fundamental while the second term represents harmonic 

distortion and is neglected. Hence 

eo N, keqe (2-Gb) 

keq is known as the equivalent gain, or the describing 

function, and it is a function of input-signal 

amplitude E. The describing function for the non- 

linearity can be found as follows (Gibson, 1963): 

keq = g ( E )  + jb(E) (2-7 1 
where 

d E )  = - 'F (EsinQ)sined@ 
3 - E  

b(E) = - 
From Fig. 2-5 

(2-8a) 

(2-8b) 

Referring to the equations (2-6b) and (2-91, one 

can see that for the existence of sustained oscillations 



there must exist a simultaneous solution which satisfies 

both equations: i.e., 
1 G( j lc ; ) )  = - - 

ke¶ 
(2-10) 

A convenient way of investigating equation (2-10) is 

to draw polar plots of both sides and check for an 

intersection; the point of intersection gives the 

frequency and amplitude of oscillation. The oscilla- 

tions may be stable or unstable depending on whether 

the amplitude of oscillation decreases or increases 

as the operating point on -l/keq locus moves within 

the frequency-sensitive locus of G ( j d  ) ;  i.e., the 

Nyquist plot. 

One can apply the describing function method 

to check the stability of a system having a particular 

type of nonlinearity N. N is single-valued and symmetric, 

lying in first and third quadrants. The describing 

function for this type nonlinearity will always be real 

and non-negative (Gibson, 1963). Fig. 2-6(a) shows a 

saturation type nonlinearity, a representative of the 

class we are considering. The equivalent gain for such 

a nonlinearity is given by (Thaler and Pastel, 1962) 

which is always real and non-negative, as expected. The 

polar plot is shown in Fig. 2-6(b). 



17 

A 

M 

/ / 
-M 

Im . 
L 

Re . . - 1  
k -7 

-E increases  

Fig. 2-6 Characterist ic  and t h e  Polar P l o t  of 
Equivalent Gain for t h e  Nonlinearity 



Consider the system whose block diagram is 

shown in Fig. 2-7(a) which is similar to Fig. 2-4(b) .  

It was stated previously that Gleq(s) has n - i poles, 
G*(s) has i poles, and Hzeq(s) has i - 1 zeros. Hence 

G(jd = Gleq(S)G2(~)H2eq(~) (2-12) 

has n poles and i - 1 zeros. Now to check for the 
existence of oscillations, the polar plot of - - 1 

keq 
for a single-valued,symmetric nonlinearity is plotted 

in Fig. 2-8. For oscillations 

(2-13 ) 

where dc is a frequency for which G ( j d )  is real. This 

is  possible if and only if G(jd) is inherently unstable 

in the linear region or G(jd ) is conditionally stable 

as shown in Fig. 2-8, labelled G' ' (jd ) and G' (jd), 

respectively. 

From Equation (2-13) it can be seen that 

oscillations can exist for some value of gain k as 

long as the polar p l o t  of G(jd ) crosses the negative 

real axis. Thus to avoid oscillations G(jd) should 

not cross the negative real axis for any value of gain; 

i.e., G(jcd) should have the f o r m  shown by the curve 

in Fig. 2-8 and labelled G'"(ju3). This is possible 

if G(j'd) has a pole-zero excess of 

zeros of G(jd ) are located at proper places. Thus it 

is desired to have 

,< 2 and if the 
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Fig. 2-7 The System of Fig, 2-4(b) 

- 1  

--b Re, 
-E increases 

Fig. 2-8 Various Types of G ( j C I ) )  Functions 
Showing the Possibility of Oscillations 
and t h e  Polar Plot of -l/keq for t h e  
Nonlinearity 
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n - i + 1 6 2  

i > n - 1  (2-14) 

in order to prevent oscillations. Also, it is known 

that the more zeros there are in H (s), the better 

a system can be controlled, so that the optimum choice 

for i would be n; that is, the best location for the 

nonlinearity is at the left most end of the system. It 

should be noted that stability of the system st i l l  de- 

pends upon the zeros of H (5 )  and hence the feedback 

coefficients, 

2eq 

2eq 

Example 

Consider the plant shown in Fig, 2-9(a) which 

i s  to be controlled by state variable feedback, All 

systems saturate at one or another point. Here satura- 

tion is accounted for by the nonlinearity labelled N, 

which is presumed to be of the type shown in Fig. 2-6(a). 

Different possibilities for saturation are shown in 

Fig. 2-9(b), (c), and (a). It is the purpose of this 

example to investigate what happens when the system 

saturates at these different points. 

Case I 

Let N be located as in Fig. 2-9(b), State 

variable feedback is to be used to achieve the closed- 

loop transfer function 
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F i g .  2-9 P lant  Showing S a t u r a t i o n  a t  
Different P o i n t s  in the System 
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when operating in the linear region. The result is 

shown in Fig. 2-10(a). When the system operates in 

the nonlinear region, the input-output relation does 

not hold: but some aspects of the behavior can be 

investigated by the describing function method. By 

block diagram reduction of F i g .  2-10(a) 

- 10 
- s2 + 5.25s + 8 

The polar plots  of G ( j d  ) and - 1 3s given 
keq 

by Equation (2-12) are shown in Fig. 2-11. The point 

at which G ( j d )  intersects with the negative real axis 

can be found very easily to be -0.238 at d = 2 . E  

That is, 

= -0.238 
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L 

Fig. 2-10 Nonlinear System Designed by 
State Variable Feedback Method 
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4 Im. 

b Re. 

I 

F i g .  2-11 Polar Plot of G ( j W )  and -l/lceq for Case I 



2 5  

n u s  for oscillation ( -  +Imax = -0.238, which gives 
eq 

the maximum value of k, the linear gain, which the 

nonlinearity can have. In this case oscillations 

will occur when k is increased beyond 1/0.238; however, 

examples can be found where even without variation of 

k, the system can show oscillations. One such system 

is shown in Fig. 2-12(a) along with its polar plot 

in Fig. 2-12(b). 

Case I1 

Let N be located as in F i g .  2-9(c). The system 

still has the same configuration when operating in the 

linear region. When operating in the nonlinear region 

1 - - s ( s  + 1) 

so that 

The polar plot for G(jd)and - 1 are shown in F i g .  2-13, 

and it can be seen that there cannot be an intersection 
keq 

for  any value of gain k of the nonlinearity or for any 

gain associated with G ( j d ) .  m u s  there is no oscillation 

and the system is stable for all gain. 
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O(s + 2 
G ( s )  = 38(S2 + :.0266s i 0.783) 

(a) 

F i g .  2-12 Polar Plot of G ( j O )  and -l/k fox 
the :-'istern Shown in F i g .  2-1272) 
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Fig. 2-13 Polar P l o t  of G ( j W )  and -l/keq for Case I1 
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C a s e  111 

L e t  N be l o c a t e d  as i n  Fig.  2-9(d) ,  I n  t h e  

n o n l i n e a r  r e g i o n  

10 
= s(s + l ) ( s  + 3 )  

so t h a t  

- 1.25(sL + 4s + 8) 
G ( s )  - s ( s  f 3 )  (s + I)' 

Again, it can  be s e e n  f r o m  t h e  polar plot  of Fig.  2-14 

t h a t  t h e  system i s  s t a b l e  for all g a i n  whether it be 

a s s o c i a t e d  w i t h  t h e  n o n l i n e a r i t y  or wi th  any o t h e r  g a i n  

i n  t h e  forward loop. 

Comparing all three cases, one can see t h a t  as 

t h e  N i s  moved towards t h e  l e f t  end t h e  number of zeros 

of H 2 e q ( s )  i n c r e a s e s ,  f o r c i n g  t h e  polar plot  of G ( j U ) )  

t o  approach t h e  o r i g i n  a t  a l o w e r  m u l t i p l e  of 90°. 

F i n a l l y ,  when s a t u r a t i o n  takes place a t  t h e  l e f t  most 

s t a t e  v a r i a b l e ,  G ( J d )  approaches t h e  o r i g i n  a t  -goo, 

and t h e  example system becomes stable for  a l l  ga in .  

S t i l l ,  p l a c i n g  n o n l i n e a r i t y  a t  t h e  l e f t  end does n o t  

g i v e  a s s u r a n c e  of s t a b i l i t y  i f  t h e  system is c o n d i t i o n a l l y  

s tab le  i n  t h e  l i n e a r  r eg ion ,  as t h e  l o c a t i o n  of zeros of 
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F i g .  2-14 Polar Plot of G ( j U )  and -l/keq for  Case 111 



HZeq(s) influences the shape of the polar plot of G ( j d )  

and hence helps to determine whether or not there are 

any intersections with the plot of - 
To assure the absolute stability for all values 

of gain,a method of designing a system is presented in 

the next chapter. Thus it can be concluded if N is 

located at the left end, the number of zeros of Hzeq(s) 

to control the system is at a maximum; and the system 

can be made stable  for all gain by placing t h e s e  zeros 

at proper places. 

Although the conclusions derived above were 

discussed for the system having a saturation type 

nonlinearity, they also hold for any frequency-insensitive, 

single-valued, and symmetrical nonlinearity, as k for eq 
such nonlinearity is always real and non-negative. 



CHAPTER IIX 

DESIGN OF NONLINEAR GAIN-INSENSITIVE SYSTEMS 

In Chapter If it was shown that the stability 

of systems containing a single nonlinearity and designed 

by using state variable feedback depends upon the loca- 

tion of both the nonlinearity and the zeros of H (s). 

In this chapter the same type of system is studied 

further and a method of making the system gain-insensitive 

to ensure stability is presented. Systems designed by 

the proposed method 

for any value of gain associated with the linear part 

of the system or with the nonlinearity. 

2eq 

are shown to have absolute stability 

Next, gain-insensitive and non-gain-insensitive 

systems having the same closed-loop transfer function 

in the linear region are compared and significant 

features of gain-insensitive systems are presented. 

One can show how the introduction of an additional 

intentional nonlinearity and state variable feedback 

can be combined to design systems to have both absolute 

stability and satisfactory transient response. 

technique utilizes the results of Herring (19671, who 

The 

31 
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has suggested a method of designing systems which are 

absolutely stable for all values of gain. He has shown 

that a system can be made absolutely stable and insen- 

sitive to gain if n - 1 of the n open-loop poles are 

placed where n - 1 of the n closed-loop poles are required. 
In other words, in terms of Fig. 3-1,the zeros of Heq(s) 

are placed at the Bame places where n - 1 of the n poles 
of G ( s )  are located. 

A step-wise procedure for designing a gain- 

insensitive system is given below. 

1. 

2. 

3 .  

4. 

Describe the system in physical variables 

and assume all the variables are available 

for control purposes. 

Choose the desired locations of the n 

closed-loop poles of Y/R. 

Modify the plant, or open-loop system, 

with series or feedback compensation such 

that n - 1 open-loop poles are located at 
the positions of n - 1 of the desired poles 
of Y/R. 

Use state variable feedback to force the 

n - 1 zeros of Heq to coincide with n - 1 
of the new poles of G ( s )  . 
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Fig. 3-1 A Linear Gain-Insensitive System, 
Where G(s)Heq(s) = k'/s+a 
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5. If a l l  the variables are not available, 

use the calculated values of the feedback 

coefficients to determine the required 

minor-loop compensation (Schultz and 

Melsa, 1967). 

A system designed by the gain-insensitive method 

has only 1 out of the n closed-loop poles as a function 

of gain, whereas a non-gain-insensitive system has a l l  

n of its closed-loop poles as a function gain. Thus 

when the gain varies, the response of the gain-insensitive 

system is likely to change very little: however, the 

response of the non-gain-insensitive system can change 

significantly,and t h e  system may even become unstable. 

A l s o ,  t h e  gain-insensitive system always satisfies the 

frequency criteria for optimal control as the polar 

plot for open-loop gain never crosses the unit circle, 

while the non-gain-insensitive system does not. 

Consider a nonlinear system shown in F i g ,  3-2(a) 

where N is of the specific type considered in Chapter 11: 

namely, N is frequency-insensitive, single-valued, and 

symmetrical. The system is designed such that n - 1 
zeros of H ( s )  lie at the same places where n - 1 of 
the n open-loop poles are located. Such a system can 

be reduced to a simple first-order nonlinear system in 

series with an (n - l)z order system as shown in 

2eq 
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Fig- 3-2 Nonlinear Gain-Insensitive System 
and Modified Block Diagram 
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Fig. 3-2(b). 

graphical  methods such as t h e  l i k e  i s o c l i n e  method. 

The system des igned  by t h e  non-ga in - insens i t i ve  method 

i s  of nth order and cannot be reduced t o  any such  s imple  

form and hence cannot  be ana lyzed  a s  e a s i l y  by g r a p h i c a l  

It is easy t o  ana lyze  such a system by 

methods. 

Although t h e  g a i n - i n s e n s i t i v e  method of des ign ing  

a system is  s u p e r i o r  t o  other  t echn iques  i n  many respects, 

it i s  d i f f i c u l t  t o  p u t  t h e  z e r o s  of H 

top of t h e  poles of G ( s ) .  If c a n c e l l a t i o n  does n o t  

take place, then  t h e  system has n p o l e s  which va ry  w i t h  

t h e  g a i n ,  possibly even becoming u n s t a b l e  i f  t h e  poles 

are nea r  t h e  j d  -axis (Herr ing ,  1967) .  

(s) e x a c t l y  on 
2eq 

The r e s u l t s  of t h i s  and t h e  p r e v i o u s  c h a p t e r  

are now used  t o  d e s i g n  a system which saturates  a t  a 

c e r t a i n  p o i n t .  It was  mentioned p r e v i o u s l y  t h a t  a l l  

systems s a t u r a t e ;  t y p i c a l  p h y s i c a l  components having  

s a t u r a t i n g  characteristics are an amplifier i n  t h e  for- 

ward loop  and t h e  movement of some mechanical  part  which 

is restricted t o  a c e r t a i n  range. In  Chapter I1 it w a s  

shown t h a t  t h e  s a t u r a t i n g  element  m i g h t  c a u s e  t h e  system 

t o  o s c i l l a t e  i f  i t  i s  n o t  located a t  t h e  p rope r  place 

w i t h i n  t h e  loop. The locatiomof such  e lements  are 

n o t  c o n t r o l l a b l e  as they  are  part  of t h e  p h y s i c a l  system. 



A way t o  p reven t  s a t u r a t i o n  of 

i s  t o  cont ro l  t h e  i n p u t  s i g n a l  t o  t h a t  

3 7  

such an  element  

e lement ;  t h i s  can 

be done by i n t r o d u c i n g  a n  i n t e n t i o n a l  n o n l i n e a r i t y  

having a l i m i t e r  t ype  characterist ic w i t h  t h e  proper 

l i m i t i n g  va lues .  With t h e  i n t r o d u c t i o n  of s u c h  an  

element  t h e  system fo l lowing  t h e  n o n l i n e a r i t y  always 

operates i n  i t s  l i n e a r  r e g i o n  s i n c e  t h e  n o n l i n e a r i t y  

i n p u t  i s  always restricted t o  t h e  r ange  of l i n e a r  opera- 

t i o n  for t h e  n o n l i n e a r i t y .  

I n  Chapter I1 it was shown t h a t  i f  t h e  l o c a t i o n  

of t h e  n o n l i n e a r  element i s  a t  t h e  l e f t  m o s t  end and 

s ta te  v a r i a b l e  feedback i s  u s e d , t h e r e  are n - 1 z e r o s  

of H (9 )  to c o n t r o l  t h e  p l a n t .  Thus it can be seen  

t h a t  i f  a l i m i t e r  i s  i n t roduced  a t  t h e  l e f t  end and i f  

s t a t e  v a r i a b l e  feedback is used, t h e n  s a t u r a t i o n  i n  

other parts of t h e  s y s t e m  can  be prevented  and t h e  

system can be made stable for a l l  g a i n ,  even i n s e n s i t i v e  

t o  ga in .  

2eq 

The t echn ique  i s  i l l u s t r a t e d  i n  t h e  fo l lowing  

example where t w o  methods of d e s i g n i n g  t h e  same system 

are p r e s e n t e d  for comparison. 

Example 1 

C o n s i d e r  t he  p l a n t  shown i n  Fig.  3 - 3 ( a )  and 

having  an i n t e n t i o n a l l y  in t roduced  n o n l i n e a r  e lement  
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J 

Fig. 3-3 Plant  and Characteristic of N for Example 1 

x3 - 1 x2 - I x1 = y 
s-1 ' - S 
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of t h e  s a t u r a t i o n  type  whose characteristic i s  shown 

i n  F ig .  3-3(b). When o p e r a t i n g  i n  t h e  l i n e a r  r e g i o n  

=10 
Gp s ( s  - 1) 

and t h e  r e q u i r e d  closed-loop t r a n s f e r  f u n c t i o n  is 

chosen t o  be 

Y 10 
(s + 2 ) ( s  + 5 )  R ( S )  = 

G a i n - I n s e n s i t i v e  Des isn  

Now f e e d i n g  back x2 t o  modify t h e  p l a n t  so t h a t  

n - 1 (1) of t h e  open-loop poles l i e  a t  t h e  same place 

as (n  - 1) one  of t h e  closed-loop poles, g i v e s  t h e  

modified open-loop p l a n t ,  as 

lo - -  1 G ( s )  = 
s - 1 + 10k2'  S 

The v a l u e  of k2' t h a t  places one  of t h e  poles of G ( s )  

a t  t h e  closed-loop pole l o c a t i o n  s = -2  i s  k 2 '  = .3. 

Next, both x 

t o  realize the desired closed-loop t r a n s f e r  f u n c t i o n  

and x2 are f e d  back from t h e  modified G ( s )  1 

when o p e r a t i n g  i n  t h e  l i n e a r  r eg ion .  By block diagram 

manipula t ion  

Y 10 
R - =  

S' + 29 + lO(k2S f k l )  

Equat ing  t h e  denominators  of the r e q u i r e d  and t h e  des igned  

closed-loop t r a n s f e r  f u n c t i o n s ,  kl and k 

be kl = 1.0 and k2  = 0.5. 

are found t o  
2 
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Non-Gain-Insensitive Desisn 

Here both x1 and x2 are fed back directly fram 

Block diagram manipulation yields 

Y 
R 

Gp ( s  1. 

10 - e -  

S Z  - s + lO(k2s + kl) 
Comparing the denominator of the required and designed 

expression for Y / R ,  kl and k2 are found to be kl = 1.0, 

k2 = 0.800. 

Both systems are shown with their root locus in 

the linear region of operation in Fig. 3-4(a) and 3-4(b) .  

Both systems were simulated on an analog computer; and 

the step responses are presented in Fig. 3-5(a) and 

3-5(b), respectively. It can be seen that for a step 

input, in the linear region of operation, both systems 

respond in the same way. However, when the input is 

increased so that the systems operate in nonlinear 

region of N, the non-gain-insensitive system gives 

an overshoot while the other system does not; in fact, 

the response of the gain-insensitive system does not 

differ very much from its response in the linear region. 

The behavior of the non-gain-insensitive system 

in the nonlinear region can be explained as follows. 

Consider the characteristic of a general saturation 

type nonlinearity shown in Fig. 3-6. ei is the input 

to the nonlinearity, eo represents the output, and k is 



I 

-5 
V -2 

1 -E I 

Pig. 3-4 Gain-Insensitive and Non-Gain-Insensitive 
Systems w i t h  Their Root Locus Sketch in 
the Linear Region 
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Operation in t h e  Nonlinear Region 

(a)  (b) 

F i g .  3-5 Time Response for t h e  System of Example ? 
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Fig. 3-6 

-. - 

Explains the Decrease i n  k '  When 
N Operates i n  the Nonlinear Region 
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the gain in the linear region of operation. when the 

input has a magnitude less than e,, the output is  k 

times the input and the equivalent gain is 

When ieil > the output is Lesk and k' becomes 

Thus it can be seen that as the input amplitude increases 

' decreases. In Example 1 when the input amplitude 

is increased, so that the input to N is greater than 

es = 0.5, k' decreases and hence the total gain in 

the loop decreases, causing the n poles of non-gain- 

insensitive system to assume a different configuration. 

The new closed-loop configuration can be a pair of complex 

conjugate poles (see root locus sketch Fig. 3-5(b)), which 

causes overshoot in the output of the system. 

Example 2 

Consider the plant shown in F i g .  3-7 (a) . The 
nonlinearity N is of the saturation type as shown in 

Fig, 3-7(b), In the linear region 

- 1  Gp - - 
s3 

and the desired closed-loop transfer function is chosen 

to be 

Y 10 
i$s) = (s + 10)(s2 + s + 1) 
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Fig. 3-7 Plant and Characteristic of N €or Example 2 
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Two designs, gain-insensitive and non-gain-insensitive, 

are shown with their root locus plots for linear opera- 

tion in Fig. 3-8(a) and (b), respectively. In the linear 

region both systems respond in the same way, but when 

operating in the nonlinear region, as the step-input 

amplitude is increased, the non-gain-insensitive system 

gives more and more oversnoot and finally becomes 

unstable. This does not happen with the gain-insensitive 

system. 

the same reasoning given in the previous example and 

also can be seen from the root locus diagram. 

The above phenomenon can again be explained by 

Example 3 

The last example has the plant shown in 

Fig. 3-9(a) and the nonlinearity shown in Fig. 3-9(b). 

In the linear region 

20 
GP(s) = $ L  + 0.2s + 1)s 

and the desired closed-loop transfer function is 

Y 20 
R(S) = ( 8  + 1O)(sz  + 0.4s + 2) 

Galn-insensitive and non-gain-insensitive designs are 

shown in Fig. 3-10(a) and 3-10(b) along with their root 

locus diagrams for linear operation, Both systems were 

simulated on the analog computer and the response to a 

step input is presented in Fig. 3-ll(a) and 3-11(b), 



. 

- -  
S s s 10 . 

i i t 
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Y 

I 

Fig ,  3-8 Gain-Insensitive and Non-Gain-Insensitive 
Systems Along w i t h  Their Root Locus  S k e t c h  
i n  t h e  Linear Region 
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Operation in the Linear Region 

Operation in the  Nonlinear Region 

(a)  (b) 

Fig. 3-8' Time Response for t h e  System of Example 2 
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0.25 

-0.25 
0.25 ei 

-0.25 

Fig. 3-9 Plant and characteristic of N for Ekarr.ple 3 
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F i g .  3-10 Gain and Non-Gain-Insensitive Systems Along 
With Their Root Locus Sketch i n  t h e  Linear 
Region 



meration in the Linear Region 

O p r a t i o n  in the  Nonlinear Region 

(a 1 04 

F i g .  3-11 Time Response for t h e  System of Example 3 
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When operating in the linear region, the response to a 

step input is the same f o r  both systems. When the 

input is increased so that the systems operate in the 

region in which the nonlinearity is saturated, the 

results show that the non-gain-insensitive system 

gives more overshoot than when operating in the linear 

region and that the transient takes a relatively long 

time to die down. Also, when the magnitude of the in- 

put step to the system is increased more and more, a 

point is reached where there are sustained oscillations: 

these oscillations die down when the input magnitude 

is further increased. If the input amplitude is further 

increased, it again gives sustained oscillations a s  

can be seen from Fig. 3-12. As in the previous examples, 

the response of the gain-insensitive system does not 

differ much from the linear response when operating In 

the nonlinear region. 

From the above three examples, it can be seen 

that for the same closed-loop transfer function in the 

linear region, the system designed by the gain-insensitive 

method is absolutely stable and almost insensitive to 

gain: its response is good even when operating in the 

saturated region. For the system designed by the non- 

gain-insensitive method there is more overshoot and 





. 
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sustained oscillations if the plant is unstable or 

conditionally stable, Thus from the above observations 

it can be seen that the system stabilized by introducing 

an intentional nonlinearity and designed by the yain- 

insensitive method gives a more satisfactory performance 

although it increaees the complexity of the system. 

In the next chapter the gain-insensitive design 

technique is applied to a practical, high-order design 

pr ob 1 em. 



CHAPTER IV 

DESIGN OF A FUEL VALVE SERVOMECHANISM 

In this chapter the results of the previous 

two chapters (that is, an intentional nonlinearity 

can be introduced at the left end of the plant to 

prevent saturation of signals further down in the 

system, and using state variable feedback a system 

can be made absolutely stable and insensitive to gain) 

are applied to improve the performance of a fuel valve 

servomechanism for a General Electric 5-85 jet engine. 

The engine is being used at Lewis Research Center, a 

NASA facility, for studying engine and inlet controls 

for the supersonic transport. 

In order to apply the design technique it is 

necessary to start with a linear model of the physical 

system. Fig. 4-1 shows the block diagram of the 7th 

order linearized plant where the state variables are 

c Actuator position 

c Actuator velocity 

c Actuator acceleration 

x Spool valve displacement 

x Flapper valve displacement 

.. 
S 

f 
54 
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Gf Flapper valve velocity 

I Torque motor current 

Let c = x1, 51 = x2, 22 = x3, xs = x4, xf = x5’ 

2, = x6, and I = x7, 

by 7 first-order differential equations as shown in t h e  

Then the plant can be described 

Appendix and can be represented by equations (Ab)  and (c) 

where 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 -3.28~10~ -6.68~10~ 8 . 4 8 ~ 1 0 ~ ~  0 0 0 

0 0 0 5.76~10~ 0 0 

0 0 0 0 1 0 

0 

0 0 0 0 0 -2.5~10 

0 -3. O5x1O6 -2. lOxld -3. 66x103 2 . 2 6 ~ 1 0 ~  
3 
L 

- bT = f0 0 0 0 0 0 2.5~10~ ] 

0 0 0 0 0 1  - cT = il 0 

In the  actual physical system the signals xf* xs8 and c 

are limited to magnitudes less than 0,0012 inches, 

0.015 inches, and 0,125 inches, respectively. 

There have been at least two previous compensation 

schemes to improve the performance of this control system, 
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both of which utilized the above linear model. One 

scheme was to use conventional lead-lag compensation: 

the resulting system had a bandwidth of 220 hertz and 

a step response with an overshoot of 10% for small size 

step inputs. For input amplitudes of over 10% full 

scale the effects of the saturation limits caused an 

unsatisfactory deterioration of the response. 

The second scheme utilized state variable 

feedback and sought to achieve a much faster response 

than that resulting from the lead-lag compensation. 

The resulting design required feedback from 5 of the 

7 state variables and had a bandwidth of 700 hertz and 

an overshoot of less than 10% in the step response. 

Unfortunately, when the saturation limits on the system 

variables were introduced, for disturbances of any 

reasonable magnitude the system per cent overshoot i n  

the transient response was excessive: and the system 

bandwidth decreased to approximately 100 hertz (Slivinsky, 

Dellner , Aparasi , 1967). 

In this chapter the linearized system is first 

designed by the gain-insensitive method for a bandwidth 

of about 350 hertz and an overshoot less than 10%. Then 

an intentional nonlinearity of the saturation type is 

introduced whose saturating limits are found experimentally 
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on an ana log  computer so t h a t  t h e  s i g n a l s  a t  xf# xs, 

and t h e  o u t p u t  do not  s a t u r a t e  when t h e  f u l l - s c a l e  i n p u t  

i s  applied. 

D e s i s n  of Gain - Insens i t i ve  System 

The g a i n - i n s e n s i t i v e  des ign  is  carried o u t  i n  

three steps: s e l e c t i n g  t h e  desired closed-loop t r a n s f e r  

f u n c t i o n ,  modifying t h e  p l a n t  so t h a t  6 of t h e  7 closed- 

loop poles are  achieved, and f i n d i n g  the  feedback 

c o e f f i c i e n t s  so t h a t  t h e  closed-loop t r a n s f e r  f u n c t i o n  

i s  r e a l i z e d .  

As an  a i d  i n  c a r r y i n g  o u t  t h e  first s t e p  m e  can 

refer t o  t h e  pole-zero c o n f i g u r a t i o n  for t h e  o r i g i n a l  

p l a n t  as  shown i n  Fig. 4-2. Studying t h i s  plot  and t h e  

normalized step-and frequency-response cu rves  s a t i s f y -  

i n g  t h e  ITAE performance index  ( i n t e g r a l  of t i m e  

m u l t i p l i e d  absolute error, Graham and Lathrop, 1955) 

a second-order model is chosen w i t h  d = 2250  

radians/second and = 0.7 to real ize  a bandwidth 
n 

of a b o u t  350 h e r t z  and an overshoot  of less t han  10%. 

T h u s  t h e  second-order model has t h e  t r a n s f e r  f u n c t i o n  

- - 5.0625 x lo6 (4-1) (XI 
R d e 1  S 2  + 3.15 x 103S + 5,0625 x lo6 

The model i s  extended t o  t h e  seventh  order by 

choosing 2 of t h e  seven p o l e s  t o  be located as i n  
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Ilii.  

IC open-loop pole 

closed-loop pole 

F i g .  4-2 Open-Loop and Cloued-Loop P o l e  
Location f o r  t h e  Linear System 
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Equation 4-1, 1 at the location s = -1.7 x 10 , and 
the remaining 4 at the same positions as the complex 

conjugate  poles of the fixed plant. The resulting 

configuration is shown in F i g .  4-2, and the closed-loop 

transfer function is given by 

Y - - 5 . 0 9 9 5 ~ 1 0 ~ ~  
(Elextended (s+3. 34149x10J+i 1.77998~10~) 

(s+l. 3556x105+i4. 07384x10’) 

(s+1.575x1O3+i1.575x1O~) (si-1.7~104) (4-2)  

N o t e  that Y/R approaches 1 as s approaches 0 so that 

that system has 0 steady-state error for step inputs. 

The extended model was checked for time response 

and frequency reeponse, and it was found that the re- 

suits were almost the same as for the simple second- 

order system: i.e., t h e  bandwidth was 350 hertz,and 

the overshoot was 8.4% with a rise time of about .0011 

seconds . 
To carry out the second step it is necessary 

to put n - 1 ( 6 )  of the open-loop poles where 6 of 

the closed-loop poles are located. The plant is 

modified such that the new open-loop transfer function is 

2 . 9 9 7 ~ 1 0 ~ ~  
G ( s )  = s (s+3.34149x103+il. 77998~10~) (4-3) 
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T h i s  i s  done by feeding  back t h e  s ta te  variables x2 

through x7 as  shown i n  Fig. 4-3. With t h e  help of 

t h e  IBM 7072 d i g i t a l  computer, u s i n g  t h e  prograin of 

Melsa (1967)  and t h e  A# 2 8  and matrices g i v e n  above 

w i t h  t h e  s l i g h t  m o d i f i c a t i o n  g iven  i n  t h e  Appendix, 

t h e  c o e f f i c i e n t s  were found t o  be 

k2' = -4 .6774 x 10'' 

X3' = -1.7077 x lo-' 

k 4 '  = 1.57057 x lo1 

kg' = 1 . 2 7 2  x lo1 

k 6 '  * 4 . 6 6 7 1  X 

k 7 '  = -1.13557 

and t h e  g a i n  k is  1.0839. 

Now t h e  modif ied p l a n t  is used i n  f e e d i n g  back 

t h e  v a r i a b l e s  x1 through x7 t o  r ea l i ze  t h e  closed-loop 

t r a n s f e r  f u n c t i o n  g iven  i n  Equat ion  4-2. The' sys tem 

i s  as shown i n  Fig.  4-4. Again, Melsa's program was 

used t o  perform t h e  c a l c u l a t i o n s ,  t h i s  t i m e  w i th  t h e  

A, A,  and c matrices co r re spond ing  t o  t h e  modified 

p l a n t .  These matrices are g iven  below, and the de- 

t a i l s  of t h e  d e r i v a t i o n  of t h e  d i f f e r e n t i a l  e q u a t i o n s  

can  be found i n  t h e  Appendix. 

L 
0 

0 

0 

0 

0 

0 

0 0 

0 0 

2 . 7 0 3 8 2 ~ 1 0 ~  

0 1 
-i 
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- A =  

- 
0 1 0 

- 64 

0 0 0 0 

0 G 1 0 0 Q 0 

0 0 -3. 28x108 -6.68~103 -8.48~10~' 0 0 

0 0 0 0 5.76~10~ 0 0 

0 0 0 0 0 1 0 

0 0 0 -3.05~10~ -2. 10x107 -3.66~10~ 2.26~10~ 

0 1.36~10-~ 4.62~10-~ -4. ~18x10~ -3 . 4 4 x 1 ~ 1 ~  -1.26 12.19~10~ 

The feedback coefficients for this second application 
- - 

of s t a t e  variable feedback are given by 

kl = 1.000 

= 2.03317 x loe5 

kj = 3.06212 x loo9 

kq = 1.5242 

k2 

k5 = 1.77896 

k6 = 3.57654 X 

= 3.690275 x 10" k7 
2 and the gain is 1.7 x 10 . 

The system was simulated on an analog computer 

( t h e  details of the simulation are given in the 

Appendix), and the time response for a step of 5 volts 

is given in F i g .  4-5(a) showing an overshoot of about 

8.2% and a r ise  time of 0.00115 seconds. The feedback 

coefficients from different states were removed in- 

dividually, and it was found that the removal of the 

two feedback signals from both 6 and '6 does not effect 



. 

Fig. 4-5 Time Responses of t he  7th Order  
Linear Gain-Insensitive S y s t e m  
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the system response  very much as can  be seen  from 

Fig.  4 -5(b) .  To check t h e  p r o p e r t y  of g a i n - i n s e n s i t i v i t y  

t h e  g a i n  w a s  v a r i e d  from 100 t o  250, and it w a s  found 

t h a t  t h e  e f f e c t  i s  n e g l i g i b l e  as can  be seen  from 

Fig.  4 -5 (c ) .  Thus we can  conclude t h a t  t h e  system is 

g a i n - i n s e n s i t i v e ,  w i t h  a bandwidth of 350 he r t z ,  an 

overshoot  of 8.2% w i t h  a rise t i m e  of .00115 seconds 

and i s  una f fec t ed  by removing t h e  feedback f r o m  and 
.. 
C. 

I n  a more real is t ic  model of t h e  system s a t u r a t i o n  

at xs, xf, and c must be t aken  i n t o  account .  

t echn ique  of Chapters  I1 and I11 is used,  and an in-  

t e n t i o n a l  n o n l i n e a r i t y  of t h e  s a t u r a t i o n  t y p e  i s  

in t roduced ,  whose s a t u r a t i n g  l i m i t s  w e r e  found experi- 

men ta l ly  t o  be 20.595 v o l t s  so t ha t  t h e  s i g n a l s  a t  xf 

and xs never  exceed t h e i r  s a t u r a t i o n  l i m i t s ,  

Here t h e  

To check whether t h e  n o n l i n e a r  system is  correct 

or not, t h e  system re sponse  was found for t h e  s m a l l  i n -  

p u t  of 0.5 v o l t s ,  and i t  w a s  found t o  be t h e  same as 

t h a t  of t h e  l i n e a r  s y s t e m  as shown i n  Fig. 4-6(a).  The 

step response  for a step s i z e  of 5 v o l t s  is shown i n  

Fig. 4-6 (b) , Comparing t h i s  r e sponse  w i t h  t h a t  of t h e  

l i n e a r  system, one can see t h a t  t h e  former has a l a r g e  

rise t i m e  because t h e  system operates i n  part  i n  t h e  



Fig. 4-6 Time Response for  t:?e Noillincar S y s t e n  
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s a t u r a t e d  r eg ion .  The over shoo t  is about  t h e  same as 

for t h e  l i n e a r  system. 

The system response  w a s  checked w i t h  t h e  feedback 

s i g n a l s  removed from and ?, and it w a s  found t h a t  t h e  

response  i s  n o t  much a f f e c t e d .  

do no t  exceed t h e i r  s a t u r a t i n g  l i m i t s :  and t h e  p e r  c e n t  

overshoot  i s  i n  t h e  same range  as p r e v i o u s l y ,  as can  

be seen  from t h e  t i m e  r e sponse  shown i n  Fig.  4 -6(c) .  

A l s o ,  t h e  effects  of vary ing  t h e  g a i n ,  which was v a r i e d  

f r o m  100 t o  255, were checked: and t h e  r e sponse  was 

found t o  be almost u n a l t e r e d ,  as can be seen  f r o m  

Fig.  4-6(d) .  The system s e n s i t i v i t y  w a s  e v a l u a t e d  by 

va ry ing  t h e  feedback c o e f f i c i e n t s  by ~25%, and it  w a s  

found t h a t  t h i s  v a r i a t i o n  of t h e  feedback c o e f f i c i e n t s  

does n o t  cause  any serious problems. Thus  it can be 

concluded t h a t  t h e  non l inea r  system is i n s e n s i t i v e  t o  

g a i n ,  v a r i a t i o n s  i n  feedback c o e f f i c i e n t s ,  and the  

removal of t h e  feedback s i g n a l s  franc and';. When 

t h e  i n p u t  is  such t h a t  t h e  system operates i n  t h e  non- 

l i n e a r  r ange ,  t h e  s t e p  response is slower t h a n  that of 

t h e  l i n e a r  system but t h e  per c e n t  ove r shoo t  i s  almost 

t h e  same. 

The s i g n a l s  xf and xs 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

The representations of linear and a certain 

class of nonlinear state variable feedback systems 

have been presented. The nonlinear system was assumed 

to have a single nonlinear element of the non-memory 

type which was symmetric and had its characteristic 

lying in the first and third quadrant. The Geq and 

representation was used to show that the optinium % 
location for  the nonlinear element is at the left end, 

although stability depends on both location of the 

nonlinearity and the locations of the zeros of f-I ( s ) .  
2eq 

To ensure absolute stability for all yain, t h e  

gain-insensitive method of design was proposed; and a 

step-by-step procedure was presented. Systems designed 

by the gain-insensitive method are absolutely stable 

and insensitive to gain. In t h e  case of nonlinear 

systems, an nth order system can be reduced to a 

first-order nonlinear system in series with the 

(n-l)st-order nonlinear system which is easy to analyze. 

Also ,  even when working in the nonlinear region the re- 

sponse of the nonlinear system is not degraded a s  much 

69 
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as that of the same system designed by non-gain- 

insensitive methods. Thus the linear and nonlinear 

gain-insensitive systems are better in certain respects 

than non-gain-insensitive systems. 

The property of inherent saturation in a plant 

was discussed along with effects which may cause in- 

stability. Saturation in the fixed plant can be pre- 

vented by introducing an intentional, saturation type 

nonlinear element with the proper limits. 

this idea with the gain-insensitive method using state 

variable feedback, a system not only can be made stable 

but also absolutely stable for all gain. 

By combining 

The technique was used in improving the response 

of a fuel valve servomechanism which saturates at three 

different points. The resulting system has a large 

bandwidth and a low overshoot in response to a step 

input when operating in the linear region: in the non- 

linear region, the response was better than that achieved 

in two previous design attempts. 

Although the method worked w e l l  in the design 

example, there are several things yet to be investi- 

gated in connection with the design of the fuel valve 

servomechanism. The sensitivity of the system can be 

investigated further, perhaps even incorporating 

sensitivity requirements as one of the design criteria. 
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Also, whether the system response can be improved by 

using the conventional series compensation in combina- 

tion with the gain-insensitive design technique can be 

investigated. A systematic method is still not available 

for choosing the closed-loop transfer function so that 

the unavailable feedback coefficients can be made 

negligibly small. The technique of introducing an 

intentional nonlinearity has been discussed for a 

particular type of system. It still has to be deter- 

mined whether the technique is applicable to systems 

having other types of nonlinearities, such a s  a relay 

with dead space. 



APPENDIX 

Here the derivations of three sets of the (Ab)  

and (c) system equations are presented for the fuel 

valve servomechanism. A l s o ,  details of the analog 

computer simulations are given for this same system. 

The differential equations d e s c r i b i n g  t h e  fuel 

valve servomechanism are derived ' r J i th  the aid of t h e  

block diagram presented i n  Fig. A-1. Let c = x1, 

A1 - - X2' 22 = x30 xs = x4, xf = x5# G 5  = xGO and 

I = "7. Assuming all initial conditions to be zero, 

the first two equations describing the plant are 

2 = x 2  (A-1) 1 

A2 = x3 (A-2 1 
From the figure the transfer fucction relating x1 to x4 

can be used to find G 3  
- 

x1 = 8.483 x 10l1 
X4 
- 

s3 + 6 . 6 8 3  x 103s2 + 3.28 x lo8, 

Cross-multiplying and transferrin9 to the time domain, 

one gets 

2 = -3.28 x 10 8 ~2 - 6 . 6 8 3  x 10 3 X J  + 8.483 x LO 11 ~4 (A-3)  3 
A l s o  from the relationship 

x4 5.769 x lo3 
XS S 
- =  

72 



, 
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one gets 

(A-4) x4 = 5.769 x 1 0  3 x5 

and by d e f i n i t i o n  

x5 = X g  (A-5) 

The transfer f u n c t i o n  re1atLnk) x4 and x7 can be 

used t o  f i n d  k6 

x4 = 
X7 

2.262 x 5.769 x LO9 - 
(s’ + 3.669 x 10’s’ + 2.103 x 10’s f 1.761 x 10’”) 

Cross-mul t ip i  y ing  and t r a n s f e r r i n g  to t h e  tiine domainl 

one g e t s  
.. . 
x4 = -3.669 x lO3X4 - 2,103 x 107k4 - 1.761 x 10 10 x4 

x6 = -3.055 x 10 6 x4 - 2.103 x 10 7 x5 - 3.669 x 10 3 “6 

+2.262 x 5.769 x i o  3 x7 

S u b s t i t u t i n g  for and GS 

6 +2.262 x 10 x7 (A-6 1 

From t h e  block diagram 

-(s) x7 = 2.5  
U FTTi-x7 

which gives 

x7 = -2.5 x 10 3 x7 + 2.5u 

Also  

(A-7 1 

Y = x1 ( A - 8 )  

Thus us ing  Equat ions  (A-1)  t o  (A-81, the plant 

e q u a t i o n s  (Ab) and (c)  can be w r i t t e n  i n  matrix f o r m ,  



.., 
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- A =  

For modifying the part of t h e  p l a n t  from & to 

- 
b o  1 0 0 0 0 

l1 0 Q 0 
- 3 . 2 ~ 1 0 ~  -6.5~10 3 8.4~10 

0 0 0 5 . 7x10 0 0 

0 0 0 0 1 0 

3 

0 0 - 3 . 0 ~ 1 0 ~  -2.1~10~ -3.tiX1o3 2 . ~ ~ 1 0  G 

0 0 0 0 0 2.5 
L - 

u1 as shown in F i g .  4-3, the required equatiom (Ab) 

and (c) can be found as follows. The equations for 

x 2 1  X3' x 4 1  x 5 1  and 26 are the same as those o f  

Equations (A-2, 3, 4, 5, and 6). From Fig. 4-3 

. 

2 - =  x7 2.5 x 10 
~1 s + 2500 

Cross-multiplying and transforming to the time domain, 

one gets . 
x7 = -2.5 x 10 3 x7 + 2.5 x 10 2 u1 (A-9) 

and 

Y = x2 (A-10) 
I 

- bT = 0 0 0 0 2 5x1023 

c =  - c 1  0 0 0 0 0 3  

To realize t h e  closed-loop transfer function 

by feeding back a l l  t h e  variables, t h e  differential 



equations describing the modified plant are used. 

The differential equations for 218 Xz, k3, G4, 

and 26 are the same as Equations (A=18 2, 3 8  4, 5 ,  

and 6), respectively. Again, from the block diagram 

shown in Fig. 4-3 

, - 

G7 = -2-5 x 10 3 ~7 + 2.5 x 10 2 ~1 

Substituting for u1 in the above equation gives 

$ = 1.3675 x 10'2x2 + 4.6277 x 10-7x3 7 
-4.0828 x 103x4 - 3.4700 x 10 3 x5 

-2,1923 x 103x7 + 2.70982 x 10 2 u ( A - 1 1 )  

Equations (A-1, 2, 3, 4, 5, 6, 11, and 8) are sufficient 

to describe the modified plant in matrix form to be 

used on the digital computer. 

Details of the Analos Computer Simulations 

To evaluate the designed gain-insensitive 

linear and nonlinear systems an analog computer of 

- +lOOv. was used. The systems were simulated using 

t h e  differential equation approach. The different 

variables were scaled using the following scale factors 

x1(2 x 10 2 ) Xz(1) x3(2,35 103) x5(i~4) 

x6 (1) x7(2 103) u(2 x lo3) r(4 x 102) 

The limits of the saturating states xl, x4, and x5 have 

the magnitudes 5 V o l t s 8  35 volts, and 12 volts, 

respectively. The scaled differential equations are 

as follows: 



. x = 2 x 1 0 x 2  2 
1 

4 
x2 = 10 x3 
&3 = -3.28~10 4 ~2-60683x10 3 ~3+3*60978~10 4 ~4 

3 x4 = 1.3557 x 10 x5 
4 

g5 = 10 X6 
x6 = -103x10 3 X4-2.1030~10 3 x5-30669x10 3 x6+1.131x10 3 x7 

;C = 2,7350~10 1 .  x2+9.2554x3-3.4747x10 3 ~4-6.894~10 2 XS 

-2.5294~10 3 ~6-2.1923~10 3 ~7+4.60669XlO 4 u 
7 

The feedback coefficients are kl = 10, k2 .= 4.066 x I O - ~ ,  

k3 = 6.124 x 

k6 = 7.15308 X lo-', and k7 = 3.690275 X lo-'. 
k4 = 1.297188, k5 = 3.55792 x 

In order to facilitate the recording of s tep  

responses, the system was time-scaled by the factor 10 4 

which gives the new differential equations 

x2 = "3 

A3 = -3.28~~ - 0.6683~3 + 3.60378~4 

x4 = 0.13557~~ 

x5 = X6 

26 = -~.~3~4-~.2103~~-0.3669X~+0.1131~~ 

x = 0.002735~~+0.00093~~-0.34747~~-0.06894~~ 7 

-0.25294~6-0.21923~7+4~60669~ 

Using the above equations and the feedback 

coefficients the system circuit diagram is formed as 
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shown in the Fig. A-2 for t h e  Pineax system. For t h e  

nonlinear system an intentional nonlinearity is 

introduced, whose characteristic is shown i n  F i g .  A-3 

along w i t h  t h e  diode br idge t o  realize it. 
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Fig.  A-3 Details of the Br:. t i , je C i r c - u i t  
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